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ABSTRACT

DUAL MODE CONTROL

by
Leonidas M. Mantgiaris

Adviser: Robert Staffin

Submitted in partial fulfillment of the requirements

for the degree of Master of Science (Electrical Engineering)

The purpose of this report is to achieve a simple compensation scheme for
the control of a process. The criteria are that the process output closely approximate
the process input when the latter is a step and that there be no steady state error.

The reference process chosen is that of chemical concentration control.

Employing a compensation block with pure gain gives a fast response that
has a steady-state error. Integral compensation eliminates the steady-state error,
but its response has a very sluggish transient character., A switching arrangement
is evolved that combine s the desirable characteristics of both types of comvensations

while removing the unwanted traits,

This configuration is set up on an analog computer and compound results
which satisfy the original criteria are empiracally cbtained for a plant of three poles,
This is done for plants of two poles and one pole with equal success, exhibiting the

validity of the technique for a general plant,
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I.

Consideration of An Actual Process:

The example chosen is that of a chemical processing problem involving
concentration control, The object is to describe a physical system and
evolve its transfer function so that the subject matter covered in this report

is immediately applicable to a real situation.

The main component in the concentration control problem is the

mixing tank:

AGITATOR

/ ‘" Xo,r0 OUT

' Fig. 1 - Mixing Tank

The input to tank (Xi) is given in pounds of dissolved substance per gallon

of mixture. The mixture is allowed to flow into the tank at the rate of r,
gallons per minute. The concentration uniformity is maintained by agitators.
The output of the tank is similarily measured in pounds of substance per

gallon of mixture, flowing out at the rate of T4 gallons per minute.

Since the amount of substance added to the tank () during any time
interval is the amount entering minus the amount leaving over that same

time interval, AQ is given by

= X.r. At - x r t, assuming x., x , r., r are constant
AQ 11A ooA’ 8 X Xor i¥ g2

over At. (1)
then,
% = xy(6) ry(t) - x_(t) r_(t) . (2)

is obtained. This is the instantaneous

. lim  AQ(t) dQ(t)
Takmg(the At =5 6 At ’ dt
rate of change of the amount of substance in the tank at any time t. But,
xo(t) is the output concentration or simply the amount of substance Q(t) in the

tank at any time t divided by the volume (V(t)) of mixture in the tank.



Therefore

dQ(t) = x.(t) r (t) - Q(t) r_(t) (3)
—-a-——t 1 1 —(—)—v t o

Transposing,

do(t) , Qft)
vt

e T r (t) = x,(t) r;(t). (4)

If the rates in and out are made constant and equal, the volume B is also a

constant. This results in

dQ(t) a Qt) . r. x.(t), wherea = °l, r , . , V
- + = i i 71——— o i lare
constants. (5)
The La Place Transform of equation 5 is
Qs) [s+ a] = r X(s) . (6)
i,
r.
Or, Q(s) _ i
X(s) a¥a . (7)

Equation 7 is the transfer function for a perfectly mixed vessel. Thus, the

mixing tank can be represented as follows (in block diagram form):

o
Xi(s)o S‘:'IO -0 Q(s)

Fig. 2 - Block Diagram of Mixing Tank

Sinco.g(o(s) = Q_v(s)_ , two identical tanks in series can be represented as:
5 Xols) riyv/Vv
r v 0 /v
X;(s)o— 'S'io‘ s -0 X go!s)

Fig. 3 - Block Diagram of two Series Mixing Tanks

To obtain a general pneumatic valve transfer functicn, consider the

diagram of figure 4.
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Fig. 4 - Pneumatic Value

Air pressure holds a piston against a restoring spring, thus positioning a gate
which determine s the flow rate. Summing the forces acting on the value for a

given vertical displacement (y), one obtains:

Mﬁzy- + qu + Ky = P(t) A, where P(t) is the pressure on the (8)
q at piston as a function of time, A is
the area of the piston head, K is
the spring constant, F is the viscous
damping (due principally to the pack-
ing of the gate shaft) and M is the
o mass of the gate and shaft assembly.
Normall oy i a’y
rmally, the F (;f_ term is much larger than the M-(Ez- term, partly

because the damping coefficient F is larger than the mass M and partly because

the acceleration is quite low. These considerations allow the following

approximation:
|dy
F'— + Ky = P(t)A. (9)
dt
. Edy . Y= 8 P(t), where A is called the valve constant and
K dt K K
F the valve time constant. (10)

K



The La Place Transform of Equation 10 yields:

Y(s)+(£ S +1> s & pla) (11)
K K '
Y(s) _ _A/K

P(s) 1+SF/K . (12)

Usually, the output of the control valve is fed into a mixing valve.
Here the substance and perhaps a solvent are combined. Assuming that the
amount of substance per gallon of mixture is small or that the rate of mixture
flow is independently held constant, then the control valve position is seen

to directly determine the concentration of the mixing valve combination:

Xi(s) A'

_ where Xi(s) is the concentration of the
e ’
P(s) 1+ S(F/K) mixture and A' is a compound

constant.

(13)

Consider a system composed of a control valve, a mixing valve, and two

identical tanks arrangedas shown in figure 5:

MIXING VALVE

S, AGITATOR
Q
/
PNEUMATIC N .
CONTROL
VALVE Xo.fo AGITATOR
SET POINT 7
Z 7
LT ) S s
SENSOR
~- CONTROLLER

' Fig. 5 - Chemical System
The configuration shows the inclusion of a return loop as a means of automati-
cally controlling the concentration. The path consists of a sensing element,

a controller - whose transfer function is given by

G(s) = Ks +K' +K" , (14)
S
and an output which varies about a reference concentration input (called the

set point).




Representing the chemical system in block diagram form:

SENSOR
Kg+K'+K" A Xils) | eii/vy | Xols)] 5,7,
3 Y S0 OUTPUT Xgols!

s
L
CONTROLLER TANK | TANK 2
CONTROL
AND
MIXING
VALVES
+
2 je
SET POINT

Fig. 6 - Chemical System in Bleck Diagram Form

II. Statement of the Problem:

Observing that the input to the system is the set point, figure 6 is
simplijiéd by selecting values for the constants and combining the blocks of

the chémical process:

* |

K )
iy < the (s+1)(s+10)2

CONTROLLER

clt)

PROCESS

Fig. 7 - Generalized System

Focusing attention on the return loop, it is emphasized that feedback
is an excellent method for controlling a system process. Normally, the
process can be represented by its frequency domain poles and zeroes together
with a scale factor. The basic behavior of a system is determined by the
roots of its transfer function denominator. These poles form the fundamental
terms for a partial fraction expansion. Once the expansion is known in the

frequency domain, the time domain behavior is specified for any given input



via the inverse La Place Transform.

The controlling block incorporated in the forward path usually contains
a variable gain. Changing the value of this gain produces corresponding
variations in the location of the overall system's ?ole-zero locations. This
in turn changes the characterization of the system performance. For
given process poles and zeroes, the Root Locus Technique is a useful tool
for establishing a relationship between closed loop singularity positions and

variation in forward path gain.

Assuming that the controller is a variable gain only and sketching the
resulting pole-zero pattern (see fig. 8), a few desirable step responses are
then calculated for particular values of gain (see fig. 9). These responses
would be adequate, were it not desired that the output should exactly follow

the input in steady state. This cannot occur with this system.

The overall transfer function is:

clt) _ =i

rh) kg (s+1)(s+10)%

now, applying the final value (15)
theorem (with the input a unit

step):

kl 1
c(t = o©) = lim ﬁ[— 2:'3
S—» O kl+(s+1)s+10) (16)

k

100 + k; . This cannot be l for a stable system. (17)

This leads to the consideration of a controller transfer function with
a variable gain multiplied by an integrating 1 term. The overall transfer

function here is:

c(t) . kZ

r(t) k2+s(s+1)(s+10)2 . Applying the final value theorem  (18)

again (the input still a unit step):

a2 ]
elt='0) = Iim P —=—-— 2 |® (19)
s—+0 k2+s(s+1)(s+10)
= 1., This is unity independent of k, . (20)

If the criterion for the system is mer ely that it have no error in steady

state response to a step drive, the integrator with variable gain serves nicely.
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Fig. 8 - Mode 1 Pole-Zero Plot

INPUT

Fig. 9 - Mode 1 Step Responses



However, if the constraint of a speedy transient response is added, this

system is no longer satisfactory.

From the pole-zero pattern of the system with integral compensation
(see Fig. 10), it is seen that the system behaves as a dominant second
order system. This is so since both the time constants and the residues
associated with the pole pair deep in the left half plane are much smaller
than those of the pair of poles closest to the origin. With the system de-
signed for a moderate peak in step response, the time constant of the
dominant poles is seen to be on the order of 3 seconds. Looking back to
the straight gain compensation scheme, it too is seen to approximate a
second order system. However its transient time constants are seen to
be approximately .5 seconds. That the difference between 3 and .5 is
significant is brought out by the fact that time constants expressed in hours
are not unusual when dealing with chemical systems. In the generalized
block diagram under consideration, all time constants are normalized to

be given in seconds.

bt

/ \\
/
£ - \
/ \ O —CLOSED LOOP POSITIONS

L=.7

Fig. 10 - Mode 2 Pole - Zero plot



With this motivation in mind, a switching arrangement is envisaged
in an attempt to gain the desirable characteristics of both controller block

setting s while eliminating their unattractive aspects:

K, K .
t(t) ? l c(t)

(s+|)(s+|o)2

K2 o
2

Fig. 1l. - Switching arrangement

At this point it is necessary to note that a fast errorless system can
be achieved thru the use of ordinary, existing compensation methods. The
approach offered here however, has the advantages of simplicity, low cost,

and versatility while remaining extendable to non-linear devices.

III. Experimental Solution of the Problem: (_}};)

The overal system is to be designed as combinations of switch position
1 (mode 1 ) and switch position 2 (mode 2). This investigation is most easily

carried out by instrumenting the entire problem on an analog computer.

Regarding the block diagram of Fig. 11, one of the first difficulties
that arrises is that a step discontinuity in value will occur at the wiper of
the switch when it is changed from position 1 to position 2. This effective
step input at the time of switching occurs because the output of the straight
gain is not the same value as the output of the integrator. This difficulty is
circumvented in the instrumentation of the compensation block on the analog
computer (Fig. 12 is the entire program). Here R" and C" are chosen so
that their parallel combination approximates a pure gain, while switching out
R" and R2 obviously yields the integrator with its own gain value. It is
noted that conversion from one to the other yields no discontinuity in voltage
appearing across the capacitor. However, discontinuities in derivatives of

the voltage remain as a possibility.
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t=o

+100 o—&ﬁ

COMPENSATION
ANALOG

LEG

Fig. 12 - Analog Computer set-up

NOTE: Time constants have been multiplied by 10 so as to be commensurate

with the recording devices used.

1
- R,C
For the R" C" combination, the transfer function is —2—1—— . For
8% R C"
1 3 R" . ;
S<< STU oL this becomes 1{2— . Alternately, to force this to follow a step quickly,
1 —

it is desired that T'}_C“' be as large as possible. The value ofw limits the
approximation of a pure gain. In this instrumentation IT'}U“— is limited to 40.

The time for switching is determined by visually iollowing the output as dis-
played on a recorder and throwing a toggle switch when a desired level is reached.
After executing a few runs with randomly 'selected switching points, a pattern becomes
evident; switching early produces large over shoots while switching late yields " under
shoots" . A few more experimental attempts with the above pattern as a guide quickly
yields intermediate responses which do incorporate the best features of both systems;

those of being fast, errorless, and close approximations of the input drives (these
results are summarized in Fig. 13).
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Fig. 13 - Empirical Responses
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Performing similar series of runs for different mode 1 peak heights corro-
borates the results given above. A best switching point and resultant response is
readily obtainable by trial and error for each setting of the mode 1 peak height.
These curves are given in figures 14 thru 20. In addition to the input and the re-
sponse of both modes, two arbitrary bounding responses, together with a best re-
sponse (dashed line) is indicated. The area between the bounding responses is
shaded to underline the fact that these responses form a continuous, monotonic,
non-intersecting spectrum of responses for monotonic changes in switching time s.
The fact that the overall system converges rapidly (experimentally) to a suitable
response is underscored by the unsophisticated switching criteria anq techniques
used. Finally, the optimal responses are obtained when the peak for mode 1 occurs
near (and especially below) the reference input, This is so since it is observed that
the overall response is coincident with mode 1's step response (almost until the
latter's peak). Afterwards it either continues upward, flattens out just above the
first system's peak, or heads back down. For a step-like output, a sharp corner
is desired. Therefore, a mode 1 peak is designed which will allow the compound
response to flatten out at its steady state value. Obviously, a mode 1 peak just below
the steady state reference is desirable (see figures 17 and 18). Raising the peak
much above reference will force the overall response to have a large peak because
of the "coincident" property (see figures 19 and 20). Lowering the peak a good deal
below reference causes the overall output to lose its corner, forcing it to become
greatly rounded (see figures 14,15 and 16).

B. Investigating the generality of the techniques, a plant with two poles is

considered.

1
(s+1)2

<Toal

28
CHANGES SI@\J

Fig. 21 - Block Diagram and Computer Set-up for Two Poles



17

Sketching the pole-zero plots for the two systems:

A

l MODE 2

l ’
v e £

|

-
\

BECOMES UNSTABLE FOR Kj 22

Fig. 22 - Mode 1 and Mode 2 Pole-Zero Plots for Two Poles

The statements made and the plots observed for the overall system involv-

ing a plant with three poles are found to be characteristic also of a plant with two
poles.

This is easily seen from a typical family of curves for a particular first

and second system (both ad justed to behave as dominant second order systems):
|

INPUT STEP —=

4

MODE 2

Fig. 23 - Responses For Two Poles
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G Abandoning the constraint of dominant second order individual system be-

havior, a plant with a simple pole is approached:

(s+1)

Fig. 24 - Block Diagram and Computer Set-up for One Pole

Sketching the pole-zero plots for the individual system:

MODE |

‘ -COALESCENCE
{_// Kp=.25

T

¥

Fig. 25 - Mode 1 and Mode 2 Pole-Zero Plots for One Pole

Here again the characterization previously given to the overall systems
continues to be evident. Similar switching criteria can quickly be experimentally
determined to yield overall responses that are alike in nature to those gotten
with the previous plants (of course the first system cannot peak higher than the
input step as was possible before and is step-like in shape). A samplerun suffices

to show the applicability of the technique in this situation:
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4
INPUT +f——

5 — : MODE 2 STEP RESPONSE'
s——/———.. _————MODE | STEP RESPONSE

4
2

5

SWITCHING
POINTS |3
!

Fig. 26 - Responses for One Pole

Thus, the technique appears to be applicable to a great many plants (which
can be thought of as being comb inations of the plants considered here).

IV. Permutation of the Configuration:

It is of interest to note that a permutation of plant and compensation relative
to the previous forward path produces an overall response of entirely different
characteristics, This statement holds for all the plants previously investigated.
Though the plant is no longer the system output and is therefore not the object of
control any longer, it is desired to justify the nature of this new response. The

following configuration yields the set of curves illustrated in fig. 28:

Ky
r(t) t # q»i—--ﬁr—oc(!)

COMPENSATION
AS IN FIG. 12

w3

Fig. 27 - Block Dyesgses.. and Computer Set Up For Permutation
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INPUT

/

FAST SYSTEM

SLOW SYSTEM e — DENOTES SWITCH FROM
FAST TO SLOW SYSTEM

Fig. 28 - Responses for Permutation

These plots are characteristic of the responses obtained with the plants of
2 and 3 poles. Thus, the permutation is seen to yield compound results which plot
as if mode 2 is merely responding to a step drive which is smaller than the actual
input by the value that the switch occurs at. That this response does not follow

the patterns established for the previous permutation is not disturbing.

Consider the following dual-mode system along with its permuted partner:

k|
PLANT c(t)  r(tio—s ze(" PLANT —oc ()
kz —l
15" PERMUTATION N VB,

Fig. 29 - Block Diagram of Permutations
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In both cases k2 is taken = 0. The lst permutation responds to the initial
conditions present just before the switching takes place, while the 2nd immediately
goes to zero (though the plant does not). It is also observed that the steady state
plant behavior is radically different; the 1st permutation's plant going to zero and
the 2nd' s responding directly to a step input. The feedback further complicates
the total non-linearity by insuring that the two errors (e(t))are different, magnifying

the difference in the outputs.

Mathematically the forward path is always subject to the following input-out-

put relationships:
$ (D) c(t) = k, €(t) before switching (21)

¢ (D) c(t) = k, e(t) after switching (k, =0) , (22)

¢ (D) is a polynomial derivative operator gotten from
the denominator of the plant transfer function.

Examining the second equation, the following possibilities arise:

L. c(t) is the homogeneous solution of the differential equation (taking into

account the initial conditions).

2. c(t) and all its derivatives are immediately and always zero (this is the

often forgotten trivial solution).

But which solution is correct ? This question cannot be answered without
the use of the additional physical constraint of the circuit permutation. Obviously,
possibility 1 corresponds to the physical constraint of the lst permutation. Simi-

larly permutation 2 is constraint enough to force the trivial solutim (possibility 2).

Now allowing K2 to be a non-zero constant and considering the same equation,

these new possibilities are apparant:

1.  The equation is solved in the ordinary way using the initial conditions
prior to switching - allowing only the highest order deriative of c(t) to be dis-

continuous across the switch.

2. The instantaneous change of all derivative values of c(t) by a factor of
K, and the solution of the differential equation using these new conditions.
5

Again only reference to an additional constraint, can indicate which solution
is acceptable. Once this is done, possibilities 1 and 2 match permutations 1 and 2

respectively,
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Thus, consideration of the dual mode system has shown that two entirely diff-
erent solutions of the differential equation can be expected. Their applicability is
dependent upon the physical requirements of the configuration. Changing K2 to

an integrator(K2>merely increases the order of ¢$(D):
-5

D. ¢(D) c(t) = K2 e(t) after switching.

Again,feedback further changes the output by modifying the input differently

for such pe rmutation.

Finally,to underscore this difference in overall results, the following two

circuits are considered:

+
|PLANT PLANT p—0
+ 2
SH2 -0
4+ at)

Fig. 30 - Completed Permutations

Q(t) and Q (t) are impulses, doublets, triplets, etc. of proper magnitudes
which would match all values and derivatives over the switch. It is fairly obvious
that the results will still be divergent. This is so since the compensation can be
considered one block whose transfer function is time variant (with no radical
changes in velue or derivatives at the output of the block). It is a readily corro-
borated fact that a block diagram with time -dependent me mbers cannot be permut ed

without disturbing the result,

V. A Consequent Technique:

A technique which holds much promise is the following. Substituting a ramp
input for the step drive, the same compensation scheme as before is employed with
any of the three previous plants. The object is to see if the overall system can
follow the input. The motivation for this is that if a system can reasonably follow

a randomly sloped ramp input, it will do well in following a con‘ipletely arbitrary
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input. Figure 1l is again taken to be the block diagram under consideration (with
v(t) = Kt).

Placing the switch in position 1 yiclds a system whose output will cause the
error to increase without bound for a ramp input. This is readily seen from an

application of the final value theorem:

e(t) = rlt)-c(t) (23) and, e(t)= @) ={SR(s)[1- T(s)]}, (25) ¢ ilalix K(1 ) (28)
= r(t)[l-c(t):l (24) s

20 ={1_<[(s+1)(s+10)2 }}
2 (S+1)(S+10)2+ K, (26)
S»0
= o . : (27)

Since the output is to follow the input, this increasein error is intolerable.

Switching to position 2 and observing a typical error signal (steady state):

elt= o) ={s R)L- T}, (29)

_JK| s(st)(s+10)?

S | sisH)(s+HO) K,
§+0 (30)
_ 100K ‘
B, (31)
Here it is seen that the ¢rror in steady state is finite. Thus, the output
will tend to follow the input in sicady state. The height' of the output is always
100K less than the corresponding input. 4
2 :

Now, the technique consists of the following: The first system is designed to
be unstable. The second system is designed to minimize the finite steady state

error. The input is applied with the switch in position 1. The output begins to
fly off to infinity (see Fig. 31).

However, before it can radically diverge from the input, the switch is set
to position 2. The constraint of the second system is to bring the output (in steady

state) to a value 100K less than the input, Even before this occurs, the switch is
K

set back to position” 1 and the process is again repeated. In this manner the com-

pound output can be maintained oscillating about the input, well ‘within the bounds of

— ——

K,

be observed with a more sophisticated switching system and criterion.

+ 100K . In fact it is readily seen that very narrow tolerance levels can easily
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Fig. 31 Response to Technique

One of the interesting aspects of this problem, is to see if a switch operator
can " learn" to control the behavior of the overall system. Thus, this problem can
conceivably aid in an investigation of the learning process. In chemical processes,
operators are known to be able to control complex processes which behave similar
to the systems studied here, except that variations in the output occur over a

matter of hours.

Unfortunately, stability problems, saturating amplifiers and the crude
switching and measuring techniques used preclude a thorough investigation of this
problem. For the case described, the difficulties above prevent the constraining
of the output to a very narrow tolerance band, the transients (after each switch)
far exceeding those limits. Time limits the restatement of the problem in more

workable terms. It is mentioned here because of its extremely interesting aspects.

V1. Conclusion:

The employment of two simple compensation blocks and a switching arrange-
ment has yielded a configuration whose outputs are very good approximations to
the step inputs considered. Further, these results have been easily achieved using

empirical techniques and have been shown to be ind ependent of the plant chosen.
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