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Abstract Macrosaccadic oscillations of eyes (MSO) are regarded as a 
form of saccadic dysmetria secondary to cerebellar dysfunction. They are 
usually conjugate, horizontal, and symmetric in both directions of gaze. Us
ing magnetic search coils, we studied a patient with MSO that developed 
five years following head injury and involved synchronously horizontal, ver
tical, and torsional planes. The MSO were characterized by directional pre
ponderance and were associated with ipsilateral pontine lesion. We propose 
a disturbance of fixation mechanisms due to unilateral disinhibition of sac
cadic burst neurons in three planes. This could arise from either primary or 
secondary dysfunction of omnipause neurons, due to impaired input from 
the contralateral superior colliculus. The delayed onset is suggestive of 
denervation supersensitivity as the underlying pathophysiology. 
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Introduction Normally, we hold our eyes quite steadily during fixation. 
Inappropriate saccades that disrupt steady fixation are termed saccadic intru
sions. One example of saccadic intrusions is macrosaccadic oscillations 
(MSO). MSO are to-and-fro oscillations of the eyes, consisting usually of 
large horizontal saccades that occur in bursts, building up and then decreas
ing in amplitude, with intersaccadic intervals of about 200 msec.I,2 De
scribed originally in cerebellar patients, MSO are thought to reflect saccadic 
dysmetria, when patient's saccades are so hypermetric that they overshoot 
the target continuously in both directions.3 

U sing magnetic search coil technique, we studied a patient with delayed 
onset, post-traumatic, large-amplitude MSO in the horizontal, vertical, and 
torsional planes, associated with a unilateral pontine lesion. These oscilla
tions provide insight into the neural fixation mechanisms. 
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Fig. 1. MRI. Axial T2-weighted 

image shows a hyperintense signal in 

the right pons. The lesion is to the 

right of midline, involving the 

tegmentum and basis pontis. 

Case report A 34-year-old man presented with the complaint of jump
ing of his visual world - oscillopsia - for ten months. Five years pre
viously, he suffered severe head trauma involving a coup injury in the left 
frontal region and a contrecoup injury in the right upper brainstem region 
as shown by CT scan; no cerebellar lesion was evident. He sustained left 
hemiplegia and horizontal double vision. Eleven months after the injury, 
he was seen by an ophthalmologist who did not document any abnormal 
eye movements except for poor convergence. On current examination, his 
general neurological status was unchanged. Right hand coordination was 
preserved; he was able to operate a computer 'mouse' accurately with his 
right hand. Visual acuity, color perception, visual fields, pupils, fundus, 
and slit-lamp examination were all normal. When he attempted to view a 
target in the center of his field of vision, large saccades continuously in
truded on steady fixation. These were mainly horizontal, but occasionally 
diagonal, and appeared in clusters. They were suppressed when the pa
tient turned his eyes to the extremes of horizontal gaze. There was a full 
range of extraocular movements, with concomitant esodeviation of about 
8 prism diopters. No convergence could be elicited. MRI demonstrated 
hyperintense signals on T2-weighted images in the left posterior frontal 
region and the right pons, which were non-enhancing (Fig. 1). The pon
tine lesion extended down to the level of the abducens nucleus and in-
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volved both the tegmentum and basis pontis. No abnormalities of the cer
ebellum were evident. 

Methods 

EYE MOVEMENT MEASUREMENTS Horizontal, vertical, and torsional rota
tions of both eyes and of the head were recorded using the magnetic search 
coil technique.4 With head stationary, the patient attempted steady fixation, 
with each eye in tum, of visual targets located near primary position and at 
eccentricities of ± 20 deg horizontally and ± 15 deg vertically at viewing 
distances of 1.2 m (far target) or 18 cm (near target). The effects of viewing 
a near target binocularly (attempted convergence) were also measured. Hori
zontal and vertical saccades were made between the fixed target locations, 
and horizontal and vertical smooth pursuit was measured as the patient fol
lowed a small target moving through ± 15 deg sinusoidally at 0.3 Hz. Visu
ally enhanced vestibulo-ocular reflex (VVOR) was measured while the pa
tient made active horizontal or vertical head rotations, viewing first the far 
and then the near target. Data were filtered (bandwidth 0-90 Hz) prior to 
digitization at 200 Hz. Analysis was performed using interactive programs 
written in the ASYST language.5 The gain of the smooth pursuit response 
and the gain of compensatory eye movements during head rotations (VVOR) 
were determined as previously described.4 

Results Fixation was frequently disrupted by large-amplitude, predomi
nantly horizontal saccadic intrusions. Each saccade took the eye away from 
central fixation and was followed by an oppositely directed saccade within 
200 msec (Fig. 2). The oscillations were conjugate and of similar amplitude 
in both eyes, with synchronous horizontal, vertical, and torsional compo
nents. In the horizontal and torsional planes, the first saccade was always 
directed to the patient's right and clockwise; in the vertical plane, it could be 
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Fig. 2. Two segments of the right eye 

recording during attempted fixation 

of a distant target. Fixation is inter

rupted by bursts of saccadic intru

sions, which are time-locked in the 

horizontal, vertical, and torsional 

planes. Note that the first saccade is 

always to the right or clockwise, but 

has no consistent direction vertically. 

The return saccade usually overshoots 

the central fixation point. Torsional 

and vertical tracings have been offset 

for convenience of display. Upward 

deflections correspond to rightward, 

upward, or clockwise eye rotations, 

with respect to the patient. 
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either in the upward or downward direction, though it was always time
locked with the components in the other planes. During attempted fixation of 
the target at 1.2 m, the amplitude was maximal in horizontal plane (mean 
13.6 deg, range 10-4-15.5 deg); it was small and about equal in the vertical 
and torsional planes (vertical, mean 1.2 deg, range 0.9- 1.6 deg and torsional, 
mean 1.3 deg, range 0.9-1.9 deg). During viewing of the target at 18 cm, the 
amplitudes were decreased in all planes of oscillation (horizontal, mean 8.8 
deg, range 6-4- I 1.3 deg; vertical, mean 0.9 deg, range 0.3- 1.2 deg; torsional, 
mean 0.8 deg, range 0-4-1.0 deg). The intersaccadic interval was about 200 
msec (range 160-240 msec). The return saccade was usually bigger than the 
first one, and often overshot the fixation point by 2-5 deg. The frequency of 
the oscillation was about 1.5 Hz, with occasional interruptions for about 2 

sec. The oscillation changed little in darkness, with monocular viewing, or 
during voluntary saccades, smooth pursuit, and vestibular eye movements. 
Gaze holding was preserved during intersaccadic interval in horizontal 
plane, maintaining the square-wave appearance of the oscillations. In the 
torsional plane, intersaccadic clockwise drifts were evident; in vertical plane, 
there were small downward drifts in the left eye only. For voluntary 
saccades to visual target, gains (initial saccade amplitude/target amplitude) 
were 0.90 for rightward saccades and 1.13 for leftward saccades. The peak 
velocity/amplitude relationship was normal for both voluntary saccades and 
the saccadic intrusions. The gain of the horizontal VVOR was 1.02. The 
gain of the horizontal smooth pursuit was 0.89. 

Discussion Our patient's visual disability was due to frequent, large 
saccadic oscillations that intruded on steady fixation. Each involuntary 
movement away from fixation was followed after about 200 msec by a re
turn saccade, often overshooting the fixation point. These movements corre
spond to what has been called 'macrosaccadic oscillations' (MSO), although 
the latter are usually induced by a voluntary gaze shift. MSO are tradition
ally interpreted as a sign of saccadic dysmetria due to midline cerebellar 
dysfunction.2,3 This explanation may not account for several features charac
terizing the spontaneous MSO in our patient, such as: I) occurrence of the 
saccadic intrusions during attempted central fixation; 2) strict laterality con
cerning horizontal and torsional saccades (the first saccade in the burst being 
always to the right and clockwise), with no directional preponderance for 
vertical saccades; and 3) presence of the intrusions in darkness. These find
ings are consistent with simultaneous disinhibition of the three categories of 
the burst neurons: those for horizontal, vertical, and torsional saccades. Such 
disinhibition could be produced by impaired function of omnipause neurons. 

Omnipause neurons play the role of a gating mechanism for saccades; 
they are crucial for suppressing unwanted saccades during fixation and slow 
eye movements.6 Located in the caudal pons within raphe interpositus nu
cleus (RIP) adjacent to the abducens nucleus,7 omnipause neurons exert a 
tonic inhibition on horizontal saccadic burst neurons in the pontine parame
dian reticular formation (PPRF),8 and on the vertical saccadic burst neurons 
in the rostral interstitial nucleus of the medial longitudinal fasciculus 
(riMLF).91t has been found that even single omnipause neurons frequently 
project to all saccadic generators (horizontal, vertical, and torsional). JO In
puts into omnipause neurons arise in the superior colliculus (SC), frontal eye 
fields, and mesencephalic reticular formation, with SC being particularly 
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important for sustaining steady fixation. 1 1.12 Electrophysiological studies 
show that most pause cells cease discharging for saccades in all directions.3 
Therefore, omnipause neuron dysfunction should affect all saccadic genera
tors, causing unwanted saccades simultaneously in horizontal, vertical, and 
torsional planes, similar to the findings in our patient. 

The lesion on the MRI in our patient is localized to the right pons, extend
ing down to the level of the abducens nerve fascicles, involving the tegmen
tum ventral to the MLF. This location is compatible with the right RIP as 
well as the site of decussation of the crossing bundle of fibers from the left 
RIP to the right riMLF. Saccadic intrusions have been previously docu
mented in association with pontine lesions. Experimental lesions in the re
gion of nucleus reticularis tegmenti pontis (NRTP) in the monkey produce 
vertical square-wave jerks.13 Saccadic intrusions have been also reported 
with internuclear ophthalmoplegia.14-16 It could be hypothesized that sac
cadic intrusions in these cases were actually produced by damaging the adja
cent omnipause neuron projections (JA B iittner -Ennever, personal communi
cation). 

RIP is a midline structure, and its projections are usually considered bila
tera1.6.7 However, there is some evidence that the influence exerted by 
omnipause neurons upon burst neurons may be lateralized. It was shown that 
omnipause efferent projections to riMLF, and its afferents from SC, appear 
to be mainly contralateral.ll.12.T7 Saccade generation is based on push-pull 
interaction between the 'fixation' cells and the 'saccade' cells within SC. 18 

Balance of the activity in favor of the latter will result in a saccade. Unila
teral injections of bicuculline into SC in monkeys produced 'irrepressible 
saccades to the side contralateral to the injection' during attempted fixation, 
reminiscent of the findings in our patient. 19.20 The effect was probably ex
erted via the contralateral projections from SC to omnipause and saccadic 
burst neurons. This further substantiates the possibility of the lateralized 
control over the fixation mechanisms. 

Horizontal burst neurons in the right PPRF produce rightward saccades; 
burst neurons in the right riMLF produce clockwise torsional saccades.21 
However, in the vertical plane excitation of the right riMLF can produce 
both upward and downward saccades, as the riMLF on each side contains 
burst neurons for both up- and downgaze.22.23 Thus, unilateral disinhibition 
of all three types of the burst neurons on the right would result in irrepress
ible intrusion of saccades, which would be rightward and clockwise in the 
horizontal and torsional planes, respectively, but might be either upward or 
downward in the vertical plane. This was the case with our patient. Torsional 
components of the oscillation cannot be explained by Listing's law, being 
essentially unchanged with constant horizontal and varying vertical compo
nents, and therefore, are centrally produced.24 Hence, we postulate unilateral 
disinhibition of all burst neurons as responsible for the initiation of each 
'cluster' of MSO in our patient. 

Abnormality of omnipause neuron control over saccadic burst neurons has 
been previously suggested for saccadic oscillations that lack intersaccadic 
intervals, i. e. 'back-to-back' saccadic intrusions of saccadic flutter or opso
clonus.3 On the other hand, saccadic intrusions such as those of our patient 
or smaller square-wave jerks were ascribed to different mechanisms. 
Square-wave oscillations, such as occur in progressive supranuclear palsy, 
large-amplitude MSO, and saccadic back-to-back oscillations might repre-
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